Question			er	Mark	Guidance
1	(a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound \checkmark from its gaseous ions \checkmark (under standard conditions)	2	IGNORE 'Energy needed' OR ‘energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE: $\mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{~s})$ (question asks for words)
	(b)	(i)	Hydration involves bond forming OR bonds are made \checkmark	1	ALLOW statement of any type of bond being formed ALLOW (chloride) ions attract water (molecules) ALLOW a response in terms of hydrogen bonds breaking AND bond making DO NOT ALLOW response stating that energy is required DO NOT ALLOW response that refers to ions in $\mathrm{H}_{2} \mathrm{O}$, eg H^{+}
		(ii)		2	Correct species AND state symbols required for both marks Mark each marking point independently ALLOW response on upper line: $\mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{aq})$ (ie Cl- hydrated before Mg^{2+}) ALLOW $\mathrm{MgCl}_{2}(\mathrm{aq})$

Question			er	Mark	Guidance
1	(b)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=\mathbf{- 1 9 2 1}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 2 marks $\begin{aligned} & (-2493)+(-154)=(2 \mathrm{x}-363)+\Delta H_{\mathrm{hyd}}\left(\mathrm{Mg}^{2+}\right)^{\checkmark} \\ & \Delta H_{\mathrm{hyd}}\left(\mathrm{Mg}^{2+}\right)=(-2493)+(-154)-(2 \times-363) \\ & =-121\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors ALLOW for 1 mark: -2284 use of Cl^{-}rather than $2 \times \mathrm{Cl}^{-}$ (+)1921 signs all reversed OR lack of 2 for 363 -1613 sign wrong for 154 (+)3065 sign wrong for 2493 -3373 sign wrong for 2×363
	(c)		Magnesium ion OR Mg ${ }^{2+}$ is smaller OR Mg^{2+} has greater charge density \checkmark Mg^{2+} has a stronger attraction to $\mathrm{H}_{2} \mathrm{O}$ OR Mg^{2+} has a stronger bonding with $\mathrm{H}_{2} \mathrm{O} \checkmark$	2	ORA: Calcium ion OR Ca ${ }^{2+}$ is larger OR Ca^{2+} has smaller charge density IGNORE idea of close packing of ions IGNORE 'atomic' and 'atoms' and assume that Mg or Ca refer to ions, ie ALLOW Mg has a smaller (atomic) radius ALLOW Mg has a stronger attraction to $\mathrm{H}_{2} \mathrm{O}$ ORA: e.g. Ca^{2+} has less attraction to $\mathrm{H}_{2} \mathrm{O}$ DO NOT ALLOW Mg atoms have a stronger attraction to $\mathrm{H}_{2} \mathrm{O}$ DO NOT ALLOW stronger attraction/bonding between ions Note: Response must refer to attraction/bonding with $\mathrm{H}_{2} \mathrm{O}$ or this must be implied from the whole response
			Total	9	

Question		Expected Answers	Marks	Additional Guidance
2	a	F B G E D FIVE correct $\checkmark \checkmark$ FOUR correct $\checkmark \checkmark$ THREE correct \checkmark	3	$\begin{array}{cc} \hline \text { ALLOW } & \\ 1450 \\ 736 & \\ & G \\ 76 & \\ -6 & \end{array}$
	b	Correct calculation $\begin{aligned} & -642-(+76+(2 \times 150)+736+1450+(2 \times-349))^{\checkmark} \\ & -642-1864 \\ & =-2506 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	ALLOW for 1 mark: -2705 (2×150 and 2×349 not used for Cl) -2356 (2×150 not used for Cl) -2855 (2×349 not used for CI) +2506 (wrong sign DO NOT ALLOW any other answers
	c	Magnesium ion OR Mg ${ }^{2+}$ has greater charge (than sodium ion OR Na^{+}) OR Mg^{2+} has greater charge density \downarrow Magnesium ion $\mathbf{O R} \mathrm{Mg}^{2+}$ is smaller \checkmark Mg^{2+} has a stronger attraction (than Na^{+}) to Cl^{-}ion OR Greater attraction between oppositely charged ions \checkmark	3	ANNOTATIONS MUST BE USED ALLOW magnesium/Mg is $2+$ but sodium $/ \mathrm{Na}$ is $1+$ DO NOT ALLOW Mg atom is $2+$ but Na atom is $1+$ ALLOW 'charge density' here only ALLOW Mg OR magnesium is smaller DO NOT ALLOW Mg^{2+} has a smaller atomic radius ALLOW anion OR negative ion for Cl^{-} DO NOT ALLOW chlorine ions DO NOT ALLOW Mg has greater attraction ALLOW 'attracts with more force' for greater attraction but DO NOT ALLOW 'greater force (could be repulsion) ALLOW reverse argument throughout in terms of Na^{+}
		Total	8	

Question			Expected Answers	Marks	Additional Guidance
3	a		$\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \checkmark$	1	Must be square brackets
		ii	$\mathrm{dm}^{6} \mathrm{~mol}^{-2} \checkmark$	1	$\begin{aligned} & \text { ALLOW } \mathrm{mol}^{-2} \mathrm{dm}^{6} \\ & \text { ALLOW ECF from incorrect } K_{\mathrm{c}} \text { expression } \end{aligned}$
	b		Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived. $\left[\mathrm{N}_{2}\right]=\frac{7.2}{6.0}$ OR $1.2\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ AND $\left[\mathrm{H}_{2}\right]=\frac{12}{6.0}$ OR $2.0\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ $\left.\begin{array}{l} {\left[\mathrm{NH}_{3}\right]=\sqrt{\left(\mathrm{K}_{\mathrm{c}} \times\left[\mathrm{N}_{2}\right] \times\left[\mathrm{H}_{2}\right]^{3}\right)}} \\ \text { OR } \sqrt{\left(8.00 \times 10^{-2} \times 1.2 \times 2.0^{3}\right)} \\ =0.876 \text { OR } 0.88(\mathrm{~mol} \mathrm{dm} \end{array}{ }^{-3}\right)^{\checkmark}$ amount $\mathrm{NH}_{3}=0.876 \times 6=5.26$ OR $5.3(\mathrm{~mol}) \downarrow$	4	ANNOTATIONS MUST BE USED For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value 1st mark is for realising that concentrations need to be calculated. Correct numerical answer with no working would score all previous calculation marks ALLOW calculator value: 0.876356092 down to 0.88 , correctly rounded ALLOW calculator value down to 5.3, correctly rounded

| Question | Expected Answers | Marks | Additional Guidance |
| :---: | :--- | :--- | :--- | :--- |

Question		Expected Answers	Marks	Additional Guidance
c	i	Equilibrium shifts to right OR Equilibrium towards ammonia Right hand side has fewer number of (gaseous) moles \checkmark	2	ALLOW 'moves right' OR 'goes right' OR 'favours right' OR 'goes forwards' ALLOW 'ammonia side' has fewer moles ALLOW 'there are more (gaseous) moles on left'
	ii	K_{c} does not change \checkmark Increased pressure increases concentration terms on bottom of K_{c} expression more than the top OR system is now no longer in equilibrium top of K_{c} expression increases and bottom decreases until K_{c} is reached \checkmark	3	ANNOTATIONS MUST BE USED Any response in terms of K_{c} changing scores ZERO for Part (ii) ALLOW K_{c} is temperature dependent only $\mathbf{O R} K_{\mathrm{c}}$ does not change with pressure ALLOW $\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$ no longer equal to K_{c}
d	i	$\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{H}_{2}+\mathrm{CO} \checkmark$	1	State symbols NOT required ALLOW: $\begin{aligned} & \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \\ & \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}_{2}+\mathrm{CO}_{2} \\ & \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{2}+\mathrm{HCHO} \\ & \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{H}_{2}+\mathrm{HCOOH} \end{aligned}$
	ii	Electrolysis of water OR $\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \checkmark$	1	ALLOW electrolysis of brine DO NOT ALLOW reforming DO NOT ALLOW cracking DO NOT ALLOW reaction of metal with acid

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Expected Answers \& Marks \& Additional Guidance \\
\hline e \& i \& \begin{tabular}{l}
Unless otherwise stated, marks are for correctly calculated values. \\
Working shows how values have been derived.
\[
\begin{aligned}
\& \Delta S=\Sigma S \text { (products) }-\Sigma S \text { (reactants) } / \\
\& =(2 \times 192)-(191+3 \times 131) \checkmark \\
\& =-200\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) O R-0.200\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \checkmark
\end{aligned}
\] \\
Use of 298 K (could be within \(\Delta G\) expression below)
\[
\Delta G=\Delta H-T \Delta S
\] \\
OR
\[
\Delta G=-92-(298 \times-0.200)
\] \\
OR
\[
\begin{aligned}
\& \Delta G=-92000-(298 \times-200) \checkmark \\
\& =-32.4 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { OR }-32400 \mathrm{~J} \mathrm{~mol}^{-1} \checkmark \\
\& \text { (Units must be shown) }
\end{aligned}
\] \\
For feasibility, \(\Delta G<0\) OR \(\Delta G\) is negative
\end{tabular} \& 5

1 \& | ANNOTATIONS MUST BE USED |
| :--- |
| See Appendix $\mathbf{1}$ for extra guidance for marking $\mathbf{5 e (i)}$ and $\mathbf{5 e}($ (ii) |
| NO UNITS required at this stage IGNORE units |
| ALLOW -32.4 kJ OR -32400 J (Units must be shown) Award all 5 marks above for correct answer with no working |
| IF $25^{\circ} \mathrm{C}$ has been used instead of 298 K , correctly calculated ΔG values are $=-87 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{OR}-87000 \mathrm{~J} \mathrm{~mol}^{-1}$ |
| 4 marks are still available up to this point and maximum possible from (e)(i) is 5 marks | \\

\hline \& ii \& | As the temperature increases, |
| :--- |
| $T \Delta S$ becomes more negative |
| OR $T \Delta S$ becomes more negative than ΔH OR $T \Delta S$ becomes more significant |
| Eventually $\Delta H-T \Delta S$ becomes positive | \& 2 \& | ALLOW $T \Delta S>\Delta H$ (i.e. assume no sign at this stage) ALLOW 'entropy term' as alternative for $T \Delta S$ ALLOW $-T \Delta S$ becomes more positive ALLOW -T ΔS decreases |
| :--- |
| ALLOW ΔG becomes positive $O R \Delta G>0$ | \\

\hline
\end{tabular}

Question		Expected Answers	Marks	Additional Guidance
	iii	$\begin{array}{l}\text { Activation energy is too high } \\ \text { OR reaction too slow } \checkmark\end{array}$	1	$\begin{array}{l}\text { ALLOW increases the rate OR more molecules exceed } \\ \text { activation energy OR more successful collisions } \\ \text { ALLOW rate constant increases }\end{array}$
IGNORE comments on yield				

Question			Expected answers	Marks	Additional guidance
4	a		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound \checkmark from its gaseous ions \checkmark (under standard conditions)	2	IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has ' 1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE reference to 'constituent elements' IGNORE: $2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{O}^{2-}(\mathrm{g}) \longrightarrow \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$ Question asks for a definition, not an equation
	b	i	C (or 2C) A B D E (or 2E) F All seven correct $\checkmark \checkmark \checkmark$ Five OR six correct Three OR four correct R	3	
		ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2520 ($\mathrm{kJ} \mathrm{mol}^{-1}$) award 2 marks $\begin{aligned} -414 & =(2 \times 108)+249+(2 \times 496)+(-141)+790)+\Delta H_{\mathrm{LE}} \\ \text { OR } & =-414-[(2 \times 108)+249+(2 \times 496)+(-141)+790] \checkmark \\ \Delta H_{\mathrm{LE}} & =-414 \\ & =-414-2106=-2520\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	2	IF there is an alternative answer, check the list below for marking of answers from common errors

Question		Expected answers		

Question		Expected answers	Marks	Additional guidance
d	-	Cycle needs formation of $\mathrm{CO}_{3}{ }^{2-}$ ions (from C and O) \checkmark i.e. NOT breaking up of $\mathrm{CO}_{3}{ }^{2-}$ ion	1	ALLOW carbonate ion contains C and O ALLOW carbonate ion contains 2 elements IGNORE sodium carbonate contains 3 elements IGNORE carbonate ion has covalent bonds
d	ii	See also Appendix 1 at end of mark scheme Mark allocation 1 - $\quad 2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{g})$ on a top line AND $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ on a lower line AND 'Lattice enthalpy' label (as below) links the lines \checkmark $2-2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{g})$ on a top line AND $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{g})$ on a middle line AND $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ on a lower line AND ' ΔH hydration' labels (as below) link the lines \checkmark NOTE: For hydration labels, see diagram below $2 \times$ hydration of Na^{+} OR hydration of $2 \times \mathrm{Na}^{+}$is required $3-\quad \Delta H$ solution' label BELOW $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ AND ALL arrows in correct directions \checkmark	3	ANNOTATIONS MUST BE USED MARK AS FOLLOWS 1. Mark the cycle 2. IF there is no cycle, mark the equation below State symbols are required for ALL species IGNORE direction of any arrows until MARK 3 ALLOW $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ on a lower line as an alternative for $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ ALLOW $\mathrm{CO}_{3}{ }^{2-}$ hydrated first: i.e. $2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ on middle line ALLOW two hydration stages combined i.e. $\quad 2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{g})$ on a top line AND $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ on a lower line AND BOTH 'Hydration' labels link the lines \checkmark IF cycle shown using $\mathrm{NaCO}_{3}, \mathrm{Na}^{+}$and CO_{3}^{-} ALLOW ECF for third marking point only NOTE: DO NOT ALLOW ECF from any other species For simple energy cycles a maximum of 2 marks only can be awarded - See APPENDIX 1 For an equation, only 1 mark can be awarded Lattice enthalpy $=-\Delta H$ (solution) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $+\left[2 \times \Delta H\right.$ (hydration) $\left.\mathrm{Na}^{+}\right]+\Delta H$ (hydration) $\mathrm{CO}_{3}{ }^{2-}$

